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Abstract—Solutions are found for the natural convective flow from sections of vertical piates having

suitably restricted arbitrary wall temperatures so that temperature and speed distributions in the How

have similarity forms of the type found in the constant wall temperature case. Several cases are studied

in detail in which streamlings, isotherms, and speed distributions are disclosed. Included are cases of

increasing-~decreasing temperature sections and the converse, Also studied are the heat transfer and
other effects of varying the initial or starting conditions on the wall sections.

NOMENCLATURE
Poor ambient gas density [Ib/fi%];
T, ambient absolute teraperature [*R};
8o, boundary layer starting thickness
{ftl;
0, speed function starting value [ft/s}]:
T, absolute temperature [T units];
¥, kinematic viscosity [{ug. 85} units];
FPr, Prandtl nomber;
X, ¥, vertical and horizontal coordinates
respectively {80 units);
3, boundary-layer thickness [8¢ units};
s 1 —y/8;
7y temperature fanction
[ =1+
, speed function [U = u (p2 — %)},
[uo units];
U, vertical convective speed [up units);
& relative volame How rate [u8];
R, standards ratio [0/l
{U8%sp, 175 grPrile(S -+ 525 PP)L;
N, Nusselt number;
g, acceleration of gravity [(u3/80)
units];
N gas density [pe units];
W, subscript to denote wall conditions.
INTRODUCTION

It was shown in reference 1 that the following
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conventional integral momentume-encrgy bouns
dary-layer equations for natural convection from
a heated vertical plane surface

? d oo U
wLn —«p)dy»a*gv—é%japv dy+v(§}—,-)w
m{},

d {? v (4
a;cfuﬁw“*f>d}’+f»?(@“§)w:0

may be reduced to ordinary differential equa~
tions in the independent variable x of the form

PuS (8w — o) =0, )
2 8 4 288 — cgrR e =0 (2)

in which the primes indicate differentiation with
respect to x and e == 604/Pr; ¢z = 35g:
¢4 = 1057 if one seeks solutions of the form

U=ux}@ — ¥y =1— 38,
T =s 1 b w{X)m2

O
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It was pointed out that these assumed solution
forms first used by Squire [2] for the constant
wall temperature case provide the required
boundary conditions U =0, T'= 14+ »{x) at
the wall and U =0, T = 1 at the edge y = 8 of
the boundary layer. It was shown that such
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solutions for the variable wall temperature
distributions defined by 7 =px®, p and n
constants and » > 1 compare acceptably with
results in reference 3 which used the traditional
Pohlhausen method. It was further shown that
for the constant wall temperature case the
equations (1) and (2) may be solved with arbitrary
initial conditions g, 8¢ at some starting position
on the plate, and that the essential characteristics
of the boundary layer at an adequate distance
above the starting point are independent of the
starting values ug, 8o. In fact, it was found that
variations in wo, 8o have only the effect of giving
the upper boundary-layer variations in vertical
position relative to the wall. It was pointed out
out that if ug, 8¢ were selected so that

1-75 gvPr/v(5 4+ 525 Pr) =1

then the solution of equations (1) and (2) is
equivalent to the Pohlhausen solution if we
compare it with the latter beginning with a value
of x = x¢ in the latter at which # =1 and
8 = 1. In this paper, the vertical displacement
effect of the starting values uo, 8o are computed
as a function of these values.

The solution of equations (1) and (2) with
arbitrary starting values ug, 8o when 7 is constant
enables one to treat the variable wall temperature
case by a partition process. At the moment, it is
felt that the cases should be restricted to wall
temperatures high enough above ambient so that
essentially vertical isotherms may be anticipated
in the flow and the wall temperature gradients
should be small enough to allow the use of a
mean constant local wall temperature in small
segments of the wall. The constant wall tempera-
ture closed form solution, given in this paper,
makes the above application particularly feasible
and discloses some parametric forms which
should give a better feel for the flow phenomena
involved.

Five variable wall temperature cases are
studied. Three were taken to match the experi-
mental data of reference 6 and two include the
presence of both positive and negative wall
temperature gradients.

CLOSED FORM SOLUTION OF CONSTANT
TEMPERATURE CASE

The equations (1) and (2) were derived and
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solved by asymptotic series expansions for the
case 7' = O in reference 1. They have since then
been solved for that case in the closed form:

u = S23(1 4 Eg S-PJI13/ R%)/.'S (6)
& = S113 R(1)73/[1 + Ep S-PJi/3 @)
X — Xp =
Ri3 Pr[fs S1/3dS/(1 4 Eo S~P)3}/60v  (8)
in which
S =ud )

R = /8)/(u/8))st = 1 + S~FEp
Ry =1/u/8%) s = 1 + Ey

(u/8)st = (u/3)standara = 1-75 g7 Pr/vP
P =54 525Pr.

There are a number of interesting points about
this solution. Since the velocity U has the simi-
larity form shown in equation (4), the parameter
S represents a volume flow growth factor on the
starting volume flow. The ratio factor Ro
represents the excess ratio of the value of u/82 at
the starting position over the fixed value
(u/8%)s¢ of the Pohlhausen solution. For the
latter, R = Ry = 1. It is clear that as the volume
flow increases R approaches one and the
boundary-layer characteristics approach those
of the Pohlhausen solution. If at the starting
position, Ryp = 1 so that the additive excess
Eo = 0, then R = 1 and the flow characteristics
start and remain those of the Pohlhausen
solution.

It has been indicated that the boundary layer
ultimately acquires the flow characteristics of
the Pohlhausen solution above the starting
position, but the vertical position of this flow
relative to the walil definitely depends on the
starting values uo, 8o. The vertical position effect
may be computed as follows:

When S is sufficiently large, then

u = S%3/ R‘l)m
S = SU3 R})/3
and from the integrated series expansion of the
integrand in equation (8):
X =x0 = {§¥3 — 1 4 Eo/{3(1 - 3P/4)]}
R}2Pr/80v (11)

(10)
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If we set

£ - xo= {1 — Eof[3 (1 — 3P/4)]} RY* Pr/80 »

then eguation (11) becomes
SAVEL MR EERTRR \ 7

X + % = RY3 Pr S43/80v (12)
and equations (10) and (11) reduce to
u = [(x + ) 560 7g/(20 + 21 Pr)2
$ = [(x + %) 80 v (20 + 21 Pr)/7 Prg -]
.1 [0+ 21Pr)Prais
Yo+ X =ey | Tge
Eo_ - (13)
% [1 g5y Il-§125Pr}
1
= —174—0[P/R3/3g 7}
Ey
x [l TEB T 11-8125Pr] J

in which % is the effective vertical displacement
position above the normal position of the
Pohlhausen solution. It is interesting to note
that if one selects the arbitrary position x; as
zero, and, if further, ug, 8o are such that Rg = 1,
then the displacement increment ¥ corresponds
to the x value in the Pohlhausen solution where
u-—=1, 8 =1. Of course, if Ry 541, then the
X cannot be so related. On the other hand, it is
clear from equation (13) that X, = and Pr may be
fixed and ue determined as a function of Rp for
the fixed set. Thus, there are many initial values
or starting conditions leading to the same
boundary layer at a sufficient distance from the
initial point, and it is clear that the upper
boundary layer is not uniquely related to a
specific set of initial conditions. It is also clear
on the other hand that the vertical position of
the upper boundary layer does, in general,
depend on the starting conditions.

It should be remembered that even though the
presence of non-standard initial values ugdo do
not affect the ultimate u, 8 forms of the boundary
layer that this is not the case for values of x near
Xo.
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VARIABLE WALL TEMPERATURE CASES
STUDIED

As has been indicated above, the constant wall
temperature results with arbitrary initial con-
ditions may be used in a piece-wise manner to
study some variable wall temperature case for
which the similarity forms, (4) and (5), are
admissible and the isotherms remain essentially
vertical. The following wall temperature distri-
butions have been studied in some detail.

Wall temperature distribution

Case

1 Tw = 103056 + 0-137678 (x/100)

1L Tw = 1-118182 — 0413091 (x/100)?

i Tw = 1-183251 — 0-183251 (x/100)Y/2

v Tw = 1-118182 -} 628264 (x/100)*
+ 29-32364 (x/100)® (14)
— 33-97818 (x/100)*

\Y% Tw = 1-118182 — 6-28364 (x/100)2
— 29:32364 (x/100)?

-+ 33-97818 (x/100)*

The first three cases were taken because they
represented experimental temperature distribu-
tions reported in reference 6.

Cases IV and V, on the other hand, are
exploratory cases in which respectively the wall
temperature decreases about 40° and then
increases back to the starting temperature, and
where contrariwise, there is first an increase
of 40° and a decrease back to the starting
temperature.

NUMERICAL PROCEDURES

Although the solutions {6), (7) and (8) are
in closed form, the values of v and 8 are not
available explicitly as functions of x and use of
the parameter S must enter the calculations.
The procedure was as follows: A starting position
somewhere on the wall must be selected and
starting values of wg and 8y estimated in some
manner, from say some measured data, or for the
purpose of exploratory determinations. The
equations (6) and (7) then determine u and 8 in a
constant temperature step above and/or below
the starting position. Equation (8) determines a
length or distance from the starting position on
the wall for the temperature step. The parameter
S is restricted so as to make the constant
temperature assumption plausible and so that
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further decreases in the size of the step do not
yield significant increases in accuracy of the
step routine. At the terminal position for the
step, we will have values for u, § and 7, which
are used as starting values for the next step and
so the calculations progress from the original
starting position. They may be continued so long
as the equation forms (4) and (5) remain ad-
missible and the simplifying assumption leading
to the applied boundary-layer equations remain
valid.

CORRECT FOR THE ASSUMPTION OF
CONSTANT PROPERTIES
In order to compensate in part for having
assumed constant kinematic viscosity in the
boundary-layer equations, a mean constant
value 7 for each temperature step was determined
from the equation

f2 v @U/dy?) dy = 5 [ (2U]ey?) dy
= — QU =0 (15)

It turns out the mean value 7 so determined is
that value of v corresponding to the temperature
T at y = 8/6. A better estimate for the viscosity
factor # would have been obtained if a mean
value of . had been determined by equation (15)
in place of » since the » of the coefficient ¢4 in
equation (2) should be ji/pe. It may be shown
that a mean g also occurs at y == 8/6. It is not
expected that improved estimates of these
constants if one also includes Pr would influence
the general information found for the cases
studied and so a study of such corrective effects
was not undertaken at this time.

DISCUSSION OF RESULTS

As has been indicated, the first three tempera-
ture distribution cases were taken to match
those in reference 6 in the hopes of having an
experimental check on the analytical method
developed by this paper. 1t was hoped that
although check u values were not available, some
exploratory determinations would lead to appro-
priate necessary starting values so that compari-
sons would be available on other values involved.
Efforts to obtain values of the variation of 8§
from the optical data of the reference with an
adequate degree of accuracy turned out to be
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rather hopeless so that all the retained was a
comparison with the experimentally determined
heat-transfer coefficient N.

When it became clear that starting &’s could
not be accurately estimated from the photo-
graphed optical data of reference [6], it was
decided that what appeared to be a good mean
starting value of 89 = 0-04 ft would be used for
most of the calculations. Again, since no values
of u were available, it was decided to run
exploratory calculations with variation on the
parameter R, since R =1 defines the classical
Pohlhausen solution for the constant tempera-
ture case.

Case 1

Figure 1 shows the computed data for Case [
in which the temperature varied linearly from
Ty = 1-03056 at the bottom starting point
to Ty = 1-08490 at x = 39-5 ft an upper point.
Two upper curves show variations in R from
respective starting values of Ry = 0406 and
Ro = 1. The values soon become almost equal
and remain less than 1, but not markedly so.
This indicates that always either 8 is slightly
greater and/or u is slightly smaller than the
corresponding values (R = 1) for a constant
temperature plate at the temperature corre-
sponding local temperature on the plate studied.
The N curve shows the variation in heat-transfer
coefficient computed with starting values of
. The lower 3 curves
show the effect of variations in the starting R
values. It appears, as far as 8 is concerned, that
at a suitable distance from the starting point the
effect becomes, as in the case of the constant
temperature plate, just a vertical displacement.

The experimental N values of reference 6
were markedly higher than the computed values
as shown in Fig. 1. These data were also com-
pared with computed N values for constant
temperature plates corresponding to the highest
and lowest temperatures of Case I. Since such
computations for constant temperature plates
(only values at x == 20 shown in Fig. 1) have
well established accuracy and since these results
also showed the experimental data to be too
high, it was felt that comparisons of the current
calculations with these experimental data were
not suitable.
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R
|.
Ry 20-406
Ro=1 R
09
Log /—Experimentul Data  reference 6]
M, .
175 X x R X
S

[-50

125

00

©,0 Constant temperature plates, 7=32°F & IG°F respectively,

07503 Pohihausen method.
d,Ef Constant temperature plates, /=32°F & |6°F respectively,
method of reference (1],
0-50F02
025~ 0-1
I | ] ] | | | ] | | | | 1 1 | |
5 10 15 20 25 30 35 40 X
F1G. 1. Case I. Uniformly increasing wall temperature 5, R and N functions.
Case 11 if a starting 8o = 0-02 had been used in place of

Figure 2(a) shows the assumed temperature
distribution for that case and the variations in
u for starting R values of 2-5 and 0-75 when the
8¢ starting value is 0-04. For Ro =25, it is
seen that the u decreases from 1 for a short
distance and then goes into an increasing range.
The starting fluid is moving too fast for the
upper fluid and is decelerated because of
restricted access space. Figure (2c) shows corre-
spondingly a rapid thickening of the boundary
layer in the starting region. Again, in Fig. 2(a),
it is interesting to note relatively small variations
in u, and an approximately uniform speed
corresponding to about ¥ = 1 when Ry = 2'5.
In Fig. 2(b), we note that the R values rapidly
approach the standard value 1 and then
gradually increase on the upper part of the plate
to about 14, The computed heat-transfer
coefficients differ markedly from those reported
[6] in the starting region. Based on the experi-
ence with these calculations, it is almost certain
that the agreement would have been much better

80 = 0-04. Since the reported heat-transfer
coefficients [6] did not come from direct heat-
transfer measurement but were computed from
readings from photographed interferograms
(which apparently the present writer did not
read the same way), it was considered question-
able of value at this time to attempt to fit this
data more closely with the present calculations.
Figures (2c) and 2(d) show the streamline
structures corresponding to the starting values
Ro =25 and Ro =075, respectively. It has
already been observed that the higher starting
speed corresponding to Rp = 25 results in a
sudden thickening of the boundary layer in the
starting region. We may also note a slight wave
form in the streamlines and that they are con-
cave to the wall in the starting region. For
Ro = 0-75, the boundary layer shows a starting
contraction indicating that the starting speed
value up is too low for the speeds above so that
the starting flow is sucked up, so to speak, by
the faster motion above. It is also noted that
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FIG. 2(c). Case I1. Streamlines (R, = 2-5; 5, = 0-04).
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F1G. 2(d). Case II. Streamlines (R, = 0-75; 8, = 0-04).
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FiG, 2(e). Case 1. Isotherms (R, = 0-75; 8, = 0-04).
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F1G. 3(c). Case I1I. Isotherms (R, = 0-75;8, = 0-35).
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FI1G. 4(a). Case IV. Temperature and speed functions.
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F1G. 4(d). Case IV. Isotherms (R, = 2-5).
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F1G. 4(e). Case 1V. Isotherms (R, = 0-75).

streamlines are convex to the wall which would
be conducive to the formation of Gortler
vortices and possible early flow instability.
Figure 2(e) shows the isotherm structure for the
value Ro = 0-75. The relatively rapid thickening
of the lower temperature outer layer of the
boundary layer, probably resulting from the
decreasing temperature on the wall, is of
interest.

Case IIT

Some of the flow characteristics for this case
are shown in Figs. 3(a), (b) and (c). The starting
values were 8¢ = 0-035, Ry = 2-5and Ry = 0-75.
The results are not significantly different in form
from those of Case 11 and do not need general
discussion. It may be noted that in this case the
R values are closer to 1 on the upper plate
region.

Case 1V

In Fig. 4(a), we note that the comparatively
rapid temperature decrease towards the center
of the plate extends the speed slow down period,
when Ro == 2-5 to slightly past the center, and
that it also has a depressing effect on u when
R =0-75. The higher temperature above then
promotes an accelerating speed. In Fig. 4(b),
we note that for the high starting speed
(Ro = 2-5) and comparatively rapid wall tem-

perature decrease there is developed a com-
paratively rapid boundary-layer thickening past
the minimum temperature point. For the lower
entry speed, (Ro = 0-75), the boundary layer is
generally thinner with the maximum thickness
point closer to the center and there is the
temporary slow speed thinning effect of the
starting position.

The isotherms, Figs. 4(d) and (e), are wavy as
one would expect and gradually lose this wavi-
ness as the outer layers are approached. The
isotherm bands (region between isotherms) show
a maximum thickness along a line running
approximately from the minimum wall tempera-
ture point to a point somewhat below the
maximum thickness position of the boundary
layer. It is rather interesting and somewhat
surprising that the isotherm spacing at the
slower entry speed is somewhat closer, and thus
indicates greater heat transfer.

Case V

Figure 5(a) shows a speed curve for the starting
condition Ry = 0-75 with an essentially relatively
high uniform speed change until the upper wall
region is reached. Figures 5(b) and (c¢) are the
streamline for the Ro values 2-5 and 0-75,
respectively. The streamline waviness noticed
in other higher speed starting cases is also present
here. Both boundary layers show retarded
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growth in a region below the peak wall tempera-
ture position.

Figures 5(d) and (e) show the isotherms for this
case. The isotherm strips do not have the central
thickening observed for the Case 1V. Here also
the isotherms indicate a somewhat increased
heat transfer for the smaller starting speed
(Ro = 0-75).

DIRECT COMPARISONS OF CASES IV AND V

Figure 6(a) shows a comparison in thickness
for Cases IV and V at Ry values of 2:5 and
0-75. It is interesting that they tend to a common
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value toward the top of the plate. Figure 6(b)
shows the comparison in R. For Case V, the
curves for the starting Ry’s 2-5 and 0-75 approach
carly essential coincidence and show values near
the standard R == 1 in the middle section of the
plate. For Case 1V, the R values differ markedly
until the upper quarter of the plate is reached.
There is no extended range of R values
near |.

Comparison of the heat-transfer coefficients
are made in Fig. 6(c). One notes again that the
flows with lower starting speeds have the higher
heat transfer and as one would expect a higher

36

34

32

30

28

26}

24

2:2

F1G. 5(a). Case V. Temperature and speed functions.
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Ar={r-1)

(30— ————
25l e
¢ ’&/////:_\ \J\\\ 50°
802

> m \
T 1o et 80 O S 50e T 900, t805 T PORL N 60°
0 15 20 25 30

35 40 x

F1c. 5(e). Case V. Isotherms (R, = 0-75).
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. 6(a). Comparative thickness functions, cases IV and V.
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F1G. 6(b). Comparative R functions, cases IV and V.
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FiG. 6(c). Comparative heat-transfer coefficients, cases 1V and V.

temperature wall condition generally also gives
higher heat transfer.

Summary: The author has not succeeded in
finding sufficient experimental results on which
to check his theory. Generally, it may be said
that the theoretical results indicate that for the
variable wall temperature cases, the starting
boundary conditions do affect the boundary-
layer flow structure by more than just a dis-
placement distance found for the constant
temperature case.
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Arnoranus—IloIy4eHs BHpaseHUH NIIH KOHBEKTHBHOI'O TOTOKA OT BEPTUKAIBHBIX JLIACTIN

TEMIEPATYPA CTEHOK KOTOPHIX NMPOM3BOJBHO orpaHuyena. Ilpu srom nailtieHo, 4to upoduin

TEMNEePaTYpPbi M CKOPOCTH B MOTOKE MOKOGHBL AHAIOTMYHO HOJYYeHHEIM B CiIy4ae IOCTOAHHO

TEMNIEPATYPHl CTEHKH. [(ePalbHO MCCIEHOBAHO HECKOJBKO €IVYAeB, B TOM UMCIIe Cayqau

BO3PACTAHMA-YMEHBIICHNA TEMIEPATYPH CTeHKH M HaoGopor. B pesyaeTaTe IOAyJeHbE

JMHVM TOKA, N30TePMbBL M PACTIPefeTeHns cropocrelt. VMccneqoBanst mepenoe Tenia i BIMAHNE
N3MEHAIIUXCA HAYAJAbHBIX YCJIORUMI HA CTEHKAX.



